The Moser-Trudinger functional on closed surfaces

发布时间:2022年10月10日 作者:胡烨耀   阅读次数:[]

题目:The Moser-Trudinger functional on closed surfaces

报告人:Luca Martinazzi教授 (罗马大学)

时间:2022年10月11日(星期二) 下午16:00-18:00

形式:Zoom会议 会议号:824 6512 6359;密码:043980

摘要:We will discuss the celebrated Moser-Trudinger inequality, its relation to the Nirenberg problem of prescribing the Gaussian curvature on a sphere, the existence of maximizers for the inequality and of other types of critical points (of arbitrarily high energy).

Since the functional is too critical to directly apply to it the known variational methods (in particular the Struwe monotonicity trick), we will approximate it by subcritical ones, which in fact interpolate it to the Liouville functional from conformal geometry. Hence our result will also unify and give common results for these two apparently unrelated problems. This is a joint work with F. De Marchis, A. Malchiodi and P-D. Thizy.

报告人简介:Luca Martinazzi,罗马大学副教授。在偏微分方程、几何分析等领域做出重要研究成果。在数学领域权威期刊上发表论文30余篇,其中包括:Invent. Math., J. Funct. Anal.,Calc. Var. Partial Differential Equations.,J. Eur. Math. Soc.,Ann. Inst. Henri Poincar´e。论文引用次数高达1280余次(Google学术)。



打印】【收藏】 【关闭